FAVORABLE ATTRIBUTES OF ALKALINE/ SURFACTANT/POLYMER FLOODING¹

Danhua Leslie Zhang², Shunhua Liu, Wei Yan, Maura Puerto, George J. Hirasaki and Clarence A. Miller

> Rice University Houston, TX 77005-1892

¹Supported by DOE grant DE-FC26-03NT15406 and the Rice Consortium on Processes in Porous Media ²Now with Halliburton, Duncan, OK

Phase Behavior and Interfacial Tension for Anionic Surfactants

System containing a petroleum sulfonate surfactant, a short-chain alcohol, oil and brine

NaCl concentration increases -----

ANIONIC SURFACTANT ADSORPTION IN ALKALINE/SURFACTANT PROCESSES

Sandstone Formations

 Reduced adsorption due to reversal of positively charged sites on clays at high pH

Carbonate Formations

- Carbonate ion is potential determining ion for calcite and dolomite; makes mineral surface negatively charged even at neutral pH, where it is typically positive
- Reduced adsorption of anionic surfactant in presence Na₂CO₃ (but not NaOH)
- For W. Texas dolomite core, reduction from 0.5 to 0.04 mg/g expected at 1% NaCl based on BET area and data of next slide

Na₂CO₃ reduces adsorption of anionic surfactant on calcite

Contour of plateau adsorption for N67 IOS(4:1) on calcite

FIELD EXPERIENCE WITH ALKALINE/SURFACTANT PROCESSES

- Shell pilot test (Louisiana, 1980s): Good microscopic displacement efficiency but poor sweep since no polymer
- <u>Surtek:</u> Several ASP projects (with polymer) over past several years; improved recovery; work ongoing
- China: Approx. 10 pilot ASP tests, most at Daqing including one with 17 injectors and 27 producers; incremental recovery of order 20-25% OOIP for those currently complete; work ongoing

ASP: TWO SURFACTANTS FROM DIFFERENT SOURCES

Natural Soap (Naphthenic Acid+Alkali)
A hydrophobic surfactant
Generated in situ

Synthetic surfactant
A hydrophilic surfactant
Injected as the surfactant slug

Optimal salinity is a function of water oil ratio (WOR) and surfactant concentration

Surfactant Concentration, %

Optimal Salinity Correlates with Soap/Synthetic Surfactant Ratio With 1% Na₂CO₃

Soap/Synthetic Surfactant Mole Ratio

DESIRED ANIONIC SURFACTANT PROPERTIES FOR ASP PROCESS

- Single-phase micellar solution for injection (not true for most petrol. sulfonate/alcohol systems)
- Good tolerance of salt and Ca⁺², Mg⁺²; use ethoxylated and/or propoxylated molecules
- Branched hydrophobe to minimize viscous phases and emulsions
- Ability to displace oil, i. e., achieve low interfacial tensions, over a wide range of conditions
- Ability to make oil-wet surfaces more water wet

SURFACTANT BLEND

- Neodol 67-7PO Sulfate (N67-7 PO S)
 C16-17 alcohol with slight branching from Shell; propoxylation and sulfation by Stepan
- Internal Olefin Sulfonate 15/18 (IOS) from Shell
 Mixture of species having sulfonate group at various places along hydrocarbon chain
- NI Blend: 4:1 of N67-7 PO S:IOS 15/18 by weight
- No alcohol

NI Surfactant Blends Improve Salt Tolerance

Surfactant solution should be single phase at injected composition

* Cloudy after 9 months.

NI Surfactant Blends Improve Calcium Tolerance

PHASE BEHAVIOR OF ALKALINE/SURFACTANT SLUG WITH ADDED POLYMER (POLYACRYLAMIDE)

0.5% N67-7PO&IOS(4:1),
0.5% N67-7PO&IOS(4:1),
0.5% FLOPAM 3330S,
0.5% FLOPAM 3330S,
4% NaCl, 1% Na₂CO₃
2% NaCl, 1% Na₂CO₃

What is the colloidal dispersion? **Excess** oil Colloidal dispersion Lower phase microemulsion

IFT of 0.2%NI-1%Na₂CO₃-2%NaCl vs Settling Time

0.2% NI blend /1% Na₂CO₃ / 3.4% NaCl, 23 days settling with colloidal dispersion

Slow spinning speed

LOW IFT (<0.01 mN/m) OVER WIDE SALINITY RANGE

- 1 day settling & remove all colloidal dispersion by centrifuging
 4 hours settling (standard procedure)
 4 hours settling (non-standard procedure)

- ► 23 days settling 40 days settling

ASP Process

Dolomite sand pack, 35 darcies

0.2% NI, 0.5 PV, 2% NaCl, 1% Na₂CO₃, 5000ppm polymer, MY4 crude oil (19cp)

 $0.05 \ 0.10 \ 0.15 \ 0.20 \ 0.25 \ 0.30 \ 0.35 \ 0.40 \ 0.45 \ 0.50 \ 0.55 \ 0.60 \ 0.65 \ 0.70 \ 0.75 \ 0.90 \ 1.50$

Pore Volumes Injected

EFFLUENT OF ASP FLOOD

Effluent Pore Volumes

Comparison of Experiment with Simulation

PRESSURE DROP

ASP Experiment in 40 darcy Sandpack

0.5% NI, 0.5 PV, 2% NaCl, 1% Na₂CO₃, 5000ppm polymer, MY4 crude oil (19cp)

0 PV 0.1 PV 0.2 PV 0.3 PV 0.4 PV 0.5 PV 0.6 PV 0.7 PV 0.8 PV 1.5 PV

Comparison of Experiment with Simulation

ONE-DIMENSIONAL SIMULATOR

- One- dimensional, two-phase, multicomponent (surfactant, soap, alkali, polymer) finite difference
- Acids in crude oil completely converted to soap by alkali but remain in oil (overoptimum) until surfactant concentration rises sufficiently to produce underoptimum soap/surfactant ratio
- IFT depends on salinity, soap/surfactant ratio; taken below 0.01 mN/m for wide range as per data
- Horizontal displacement; fractional flow curves depend on capillary number
- Include surfactant, polymer adsorption, longitudinal dispersion
- Initial state has $S_{or} = 0.30$ after waterflood

Composition Profiles at 0.5 PV

Soap/Surfactant (blue) and IFT (red) Profiles, 0.5 PV

Oil Saturation Profiles, 0.5 PV

SIMULATION RESULTS

- Develop gradient in soap/surfactant ratio; makes process more robust similar to salinity gradient for surfactant flooding
- Good oil recovery at salinities well below optimal for synthetic surfactant; get reduced adsorption and no phase separation in slug with polymer
- Mobility control is important for high recovery
- Wide region of low interfacial tension is needed to achieve oil recovery above 95%

CONCLUSIONS

- Na₂CO₃ substantially reduces adsorption of anionic surfactants on carbonates, especially at low salinities
- Optimal salinity depends only on soap/surfactant ratio for a given surfactant and crude oil
- For 4:1 blend of N67-PO7 S:IOS 15/18 with no alcohol
 - (a) Single-phase micellar solution at injection conditions
 - (b) Colloidal material dispersed in lower phase microemulsion is needed to achieve low interfacial tensions
 - (c) IFT<0.01 mN/m for wide salinity range; min. IFT=0.001
 - (d) Birefringence near the optimal salinity
 - (e) ≥95% recovery of West Texas crude oil from dolomite and silica sand packs for ASP process with Na₂CO₃
- One-dimensional simulator shows robust process with gradient in soap/surfactant ratio, agreement with sand pack recovery curves.

Solubility Ratios after 30+ days Settling Indicate Low IFT

PHASE BEHAVIOR OF ALKALINE/SURFACTANT SLUG WITH ADDED POLYMER (POLYACRYLAMIDE)

0.5% N67-7PO&IOS(4:1),
0.5% N67-7PO&IOS(4:1),
0.5% FLOPAM 3330S,
0.5% FLOPAM 3330S,
4% NaCl, 1% Na₂CO₃
2% NaCl, 1% Na₂CO₃

ASP Experiment in 40 darcy Sandpack

0.5% NI, 0.5 PV, 4% NaCl, 1% Na₂CO₃, 5000ppm polymer, MY4 crude oil (19cp)

Excess pressure drop begins at the polymer drive

PRESSURE DROP

